
Mirror symmetry breaking as a problem in dynamic critical phenomena

David Hochberg* and María Paz Zorzano†

Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilómetro 4, 28850 Torrejón de Ardoz, Madrid, Spain
�Received 1 March 2007; published 16 August 2007�

The critical properties of the Frank model of spontaneous chiral synthesis are discussed by applying results
from the field theoretic renormalization group �RG�. The long time and long wavelength features of this
microscopic reaction scheme belong to the same universality class as multicolored directed percolation pro-
cesses. Thus the following RG fixed points �FPs� govern the critical dynamics of the Frank model for d�4:
one unstable FP that corresponds to complete decoupling between the two enantiomers, a saddle point that
corresponds to symmetric interspecies coupling, and two stable FPs that individually correspond to unidirec-
tional couplings between the two chiral molecules. These latter two FPs are associated with the breakdown of
mirror or chiral symmetry. In this simplified model of molecular synthesis, homochirality is a natural conse-
quence of the intrinsic reaction noise in the critical regime, which corresponds to extremely dilute chemical
systems.
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I. INTRODUCTION

Mirror symmetry is broken in the bio-organic world and
life as we know it is invariably linked to biological homo-
chirality. An outstanding problem associated with the origin
of life is to explain chiral symmetry breaking in nature, why
for example, it came to be that the nucleotide links of RNA
and DNA incorporate exclusively right-handed sugars while
the enzymes involve only the left-handed amino acids. A
recent survey of hypotheses concerning this phenomenon,
experimental realizations, and additional pertinent bibliogra-
phy can be found in Refs. �1–5�.

The essential key ingredients of theoretical models of
mirror-symmetry breaking processes in chemistry �4� include
reactions in which the products serve as catalysts to produce
more of themselves while inhibiting the production of their
chiral or mirror-image counterparts. In chemistry, enanti-
omers are molecules that are nonsuperimposable complete
mirror images of each other. Frank’s original model �6�, and
a variant of which we study in this paper, involves autoca-
talysis of the two enantiomers, denoted here as L and D �7�,
and mutual inhibition or antagonistic effects between the two
chiral species. More recently, Sandars introduced a model in
which the detailed polymerization process and enantiomeric
cross inhibition are taken into account, its basic features are
explored numerically, but without including spatial extent,
chiral bias, or noise �8�. Brandenburg and co-workers have
analyzed further properties of Sandars’ model and have pro-
posed a truncated version including chiral bias �9�, and have
studied this reduction with spatial extent and coupling to a
turbulent advection velocity �10�. Gleiser and Thorarinson
analyze the reduced Sandars’ model with spatial extent and
coupling to an external white noise �11� and in �12�, Gleiser
considers the reduced chiral biased model with external
noise. Despite the simplicity of the Frank model, ignoring as
it does the polymerization process, it continues to serve as a

kind of “Ising model” for chiral symmetry breaking, and the
purpose of this paper is to better understand its critical prop-
erties by exploiting the model’s relation to directed percola-
tion phenomenology.

The specific reaction scheme we will study in this paper is
given as follows. The ki denote the reaction rate constants
and we take the achiral substance A as a uniform constant
background: Autocatalytic production:

L + A�
k3

k1

L + L, D + A�
k3

k1

D + D . �1�

Dimerization and additional mutual inhibition in second or-
der reactions:

L + D→
k2

P, L + D→
k4

L + A, L + D→
k5

D + A . �2�

Spontaneous decay or recycling back to the achiral substrate:

L→
k6

A, D→
k6

A . �3�

The above scheme differs from the original Frank model
�6� in the open-flow reactor nature of the process and the fact
that the reaction Eq. �1� is allowed to be reversible �k3�0�.
We assume that each enantiomer diffuses with the same dif-
fusion constant D0 and incorporate this feature into the mas-
ter equation description of this process. We also account for
two inhibitory or mutually antagonistic reactions, with asso-
ciated rates k4 and k5, in addition to Frank’s dimerization
step, k2. This scheme is a partial hybrid between the Frank
model and the Avetisov and Goldanskii �AG� reaction �see,
e.g., Eq. �13� of �1��. Whereas Frank’s original model gives
rise to pure homoquiral states in which only one enantiomer
is present, the complete AG model leads to chiral symmetric
broken final states where both enantiomers are present in
unequal proportions. Mirror symmetry is broken in the AG
model, but the breaking is not absolute.

Both the above and Frank’s 1953 scheme yield the same
field-theoretic structure for the effective action, and more im-
portantly, therefore belong to the same universality class. In
our analysis, we allow for k4�k5, as this leads to a rich fixed
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point structure in the critical regime of the model. This
choice implicitly accounts for the influence of an external
chiral field or bias. Of course, a chiral symmetric action and
Langevin equations result from the “natural choice” k4=k5.
The properties of the chirally unbiased model can be studied
as a special case of the above scheme.

Chiral or mirror symmetry breaking is an example of a
nonequilibrium phase transition which is attained when the
control variable �k1A−k6��0 becomes small. A continuous,
second order, transition is then induced from a fully active
state, characterized by the simultaneous presence of both
competing enantiomers accompanied by fluctuations in each
chirality, to an inactive or absorbing state, in which only one
enantiomer survives. This control parameter can be made
small �or large� by simply adjusting the concentration of the
achiral molecule A. This limit implies that the net amount of
total chiral matter is vanishingly small, i.e., the chemical
system is extremely dilute at criticality. This is because the
autocatalytic amplification of the enantiomers is delicately
balanced by their spontaneous decay. The purpose of this
paper is to understand this specific critical behavior and the
emergent properties of the Frank model as exposed quantita-
tively by applying results �13� from the field-theoretic renor-
malization group �RG�. We describe a significant result in the
field of molecular chirality, namely, symmetry breaking in-
duced by internal reaction noise in extremely diluted systems
with absolute enantioselective catalysis. Such a mechanism
is vitally important for current scenarios of prebiotic chem-
istry, where it is commonly accepted that sufficiently high
concentrations of organic compounds could not have been
reached during the chemical evolution of the early earth.

We are interested in the long time and long wavelength
properties as governed by the nature of the RG fixed points
and the topology of the RG flow in the space of effective
reaction rates. The statistical field theory derived from the
scheme Eqs. �1�–�3� maps identically to an action for so-
called multispecies directed percolation �MDP� �13�, for the
special case of two “colors” or species. Thanks to this corre-
spondence, the full details of the RG analysis already carried
out for MDP can be carried over and applied to analyze the
critical chemical properties of the Frank model. In the next
section, we present the field-theory action associated with the
above scheme, which after a suitable rescaling, leads to the
effective action that holds in the critical regime. In Sec. III
we reproduce the complete RG flow diagram for this model.
However, only a part of this flow diagram is applicable to
real chemical systems, and we discuss the consequences for
chiral symmetry breaking near criticality. In Sec. IV we de-
rive the Langevin equations that individually hold in the vi-
cinity of the saddle point and the two stable fixed points of
that flow diagram and integrate these numerically to obtain
the time dependence of the competing enantiomers for both
large and small noise amplitudes. The results are briefly sum-
marized in Sec. V where the significance of criticality for
scenarios of prebiotic chemistry is emphasized. The relation
between criticality and extremely diluted chemical systems is
brought out in Appendix A. The modifications that must be
made to the effective action when the dimerization and an-
tagonistic reactions are allowed to be reversible are briefly
discussed in Appendix B.

II. THE EFFECTIVE FIELD THEORY ACTION

The correct inclusion of the effects of microscopic density
fluctuations in reaction-diffusion systems can be carried out
once the kinetic scheme is specified. With the scheme in
hand, we derive the corresponding chemical master equation,
represent this process by creation and annihilation operators
on a spatial lattice �14�, and in the final step, upon taking the
continuum limit, we pass to a path integral representation
�15,16�. From this, an effective action Sef f can be straightfor-
wardly derived which contains all the critical dynamics im-
plied by the reaction scheme to be studied. The mapping of
related kinetic schemes to continuum statistical path integrals
is spelled out in �17,18� where the main steps can be found.
Applying this procedure to the scheme in Eqs. �1�–�3� yields
the complete action S governing the reaction dynamics:

S =� ddx� dt�a*��ta − D0�
2a + k2ab − k1Aa + k6a + k3a2�

+ a*2�k3a2 − k1Aa� + b*��tb − D0�
2b + k2ab − k1Ab + k6b

+ k3b2� + b*2�k3b2 − k1Ab� + k2a*b*ab + k4b*ab

+ k4a*b*ab + k5a*ab + k5a*b*ab� , �4�

where d is the spatial dimension, and a�x , t�, a*�x , t�, b�x , t�,
and b*�x , t� are continuous fields. In the absence of noise �the
mean field approximation� the fields a�x , t� ,b�x , t� corre-
spond to the coarse-grained local densities of the L and D
enantiomers, respectively. With the noise properly restored,
these fields are generally complex—as is the noise—and do
not directly represent the physical densities. However, the
spatial averages �a�x , t�� , �b�x , t�� are indeed real and do
correspond to the particle densities �19�. The quantities
a*�x , t� ,b*�x , t� represent the conjugate or response fields.
These are intimately related to the fluctuations inherent in the
system. In fact, when the action S depends quadratically on
the conjugate fields, these can be integrated out exactly from
the path integral, and the noise statistics completely and rig-
orously characterized �19�. The noncritical spatial dynamics
�i.e., for �k1A−k6��0� implied by the action Eq. �4� with its
attendant complex noise and fields was explored numerically
in �18� for k4=k5=0 and k6=0.

The fields are next rescaled in the action Eq. �4�, for the
purpose of determining which couplings �i.e., which combi-
nations of the rate constants ki� are going to be irrelevant in
the strict sense of the RG. This step is needed in order to
correctly identify the complete set of vertices that are re-
quired to construct a field-theoretic perturbation expansion of
this action �16�. We make use of the observation that when
k2=0 and k4=k5=0, the action Eq. �4� reduces to that for two
identical uncoupled copies of the single particle Gribov pro-
cess. We therefore rescale the fields according to a*=��*,
a=�−1�, b*=��*, and b=�−1�, where �= � k3

k1A
�1/2

. The space
and time dependent densities of L and D are given by � and
�, respectively. We define the new coupling u0= �k1Ak3�1/2.
Introducing a length scale �−1 and measuring time in units of
�−2 �i.e., �D0�=�0�, we find that the new fields have scaling
dimension �d/2, while �r�= ��k6−k1A� /D0�=�2 is a relevant
perturbation in the RG sense. On the other hand, �u0�
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=�2−d/2, so this nonlinearity becomes marginal in dc=4 di-
mensions. Thus we learn that d=4 is the upper critical di-
mension of the Frank model, below which the mean field
approximation is incorrect. Note that �k2�= �k3�= �k4�= �k5�
=�2−d, and hence these couplings are irrelevant compared to
�u0�: indeed, since, e.g., �k2 /u0�=�−d/2, these particular rate
constants may be omitted from the effective action. Doing so
leads to the effective action, which takes the form

Sef f =� ddx� dt	�*��t + D0�r − �2��� − u0��*2� − �*�2�

+ �*��t + D0�r − �2��� − u0��*2� − �*�2�

+ �k2 + k4��−1�*�� + �k2 + k5��−1�*��
 . �5�

Note that the decoupling of the two enantiomers occurs when
k2=k4=k5=0, in other words, for vanishing mutual inhibition
and dimerization. In particular, we see that both the original
Frank model and the extension treated in this paper do in-
deed lead to the same field-dependent structure for the effec-
tive action, Eq. �5�.

III. CRITICAL BEHAVIOR

The field theoretic renormalization group �RG� can be ap-
plied to Sef f in order to study the nonequilibrium critical
dynamics of this reaction-diffusion system �for a pedagogical
review of this methodology, see �16��. The main purpose for
employing RG techniques is that they lead to differential
equations describing how the model parameters, in this case,
the kinetic constants, transform under a change of length
scale. As we are here interested in the infrared, or long wave-
length, properties of the Frank model, we therefore consider
the RG flow of the parameters in the long wavelength limit.
In general, certain combinations of the kinetic constants will
flow to various fixed point �FP� values that depend on the
space dimension. Thus the flow diagram can be constructed
revealing the critical properties of the underlying kinetic
scheme. As it turns out, Sef f maps exactly to a field theory of
so-called multispecies directed percolation �MDP�, for the
special case of two “colors” or species �13�. A complete and
exhaustive RG analysis has already been carried out for the
general model in �13�, and as pointed out there, the required
renormalization factors for MDP are provided by the single
species Gribov or directed percolation process. As an
immediate consequence, the parameter combination
�k1Ak3�1/2 /D0=u0 /D0 flows under renormalization to the
stable fixed point u*= 1

2
�2� /3, where �=4−d�0.

We next turn to the two interspecies couplings, which
from Eq. �5� are each seen to be proportional to the sum of
the rates u12	 �k2+k5� and u21	 �k2+k4�, respectively. The
competition between the two enantiomers comes in through
the dependence on the rate of dimerization k2, as well as
through k4 and k5. The complete RG analysis in �13� as ap-
plied to our model proves that, except for the point D, the
interspecies parameters in Sef f will flow to one of the follow-
ing d-dependent fixed point values:

�u12,u21� �  �k2 + k5��−1

D0
,
�k2 + k4��−1

D0
�

→ � D:�0,0� , S:�u*,u*�
U1:�0,2u*� , U2:�2u*,0� .

�6�

The point D corresponds to complete decoupling between
the two enantiomers, S to a chiral symmetric coupling,
whereas U1 and U2 each correspond to homochiral final
states. The flow of the interspecies couplings u12 and u21
under renormalization is depicted in the flow diagram in Fig.
1. The flow, as indicated there by the sense of the arrows,
corresponds to the critical large wavelength and long time
properties of the microscopic model defined in Eqs. �1�–�3�,
and is reached for small values of r�0. Thus the system
goes critical when the difference in the rates of autocatalytic
amplification �k1A� and spontaneous decay �k6� goes to zero.
This is achieved by varying the concentration of the achiral
matter A. This corresponds exactly to a situation of extremely
dilute net chiral material characterized by �+��0 �see Ap-
pendix A for a simple proof of this fact�. Note the topology
of the flow and the stability property of each of the fixed
points �D ,S ,U1 ,U2�: �totally unstable, saddle point, stable,
and stable�, respectively.

We first consider the flow properties as depicted within
the positive shaded quadrant u12�0 and u21�0 in Fig. 1.
Insofar as it is reasonable to assume that the kinetic constants
ki and the diffusion D0 are non-negative parameters, this is
the most pertinent part of the full flow diagram for real
chemical systems �20�. There is a totally unstable fixed point
D located at the origin u12

* =u21
* =0. This corresponds to com-

plete decoupling of the two enantiomers. But the only way to

+ = 0

=U1

U2

S

D
12u

21u

u
12

u
21

u
12

u
21

FIG. 1. �Color online� RG flow or “phase diagram” of the reac-
tion scheme. Space of scale dependent renormalized couplings u12

and u21. The shaded quadrant corresponds to the critical properties
of the model with positive kinetic constants and diffusion. There is
an unstable fixed point D at �u12,u21�= �0,0� �blue dot�; a saddle
point S at �u12,u21�= �u* ,u*� �red dot�, and two stable fixed points
U1 and U2, located at �u12,u21�= �0,2u*� and �u12,u21�= �2u* ,0�,
respectively �green dots�. The separatrix u21=u12 is the boundary
between the basins of attraction of U1 and U2. Outside this quad-
rant, the line u21+u12=0 separates the complete basin of attraction
of U1 and U2 from the dashed line of fixed points u12+u21=−2u*.
See text and Ref. �13� for further details.
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arrive at this decoupled state is by blithely setting the initial
values of k2=0 as well as k4=k5=0 all to zero. Otherwise,
the slightest positive deviation of any one of these rates from
zero, drives the system eventually to either the saddle point
S, if 
u12=
u21�0, or to one of the two stable fixed points
U1, if 
u21�
u12�0 or U2, otherwise.

The diagonal symmetry line u21=u12 in this quadrant is a
separatrix dividing the basins of attraction of the two unidi-
rectional fixed points. For chirally symmetric kinetics, the
natural choice of course is k4=k5, which puts the system
dynamics directly on top of this separatrix. Then, as the dia-
gram indicates, any positive initial value for u21=u12�0
drives the system to the chiral symmetric fixed point S. In
this case, the final state of the system is determined by the
fully symmetric couplings between the two enantiomers �see
Eq. �6��. In chemistry, a racemic mixture is one that contains
equal amounts of left- and right-handed enantiomers of a
chiral molecule. When the system is near the point S, race-
mic initial conditions lead to a racemic final state, while
nonracemic initial conditions lead to a final state that main-
tains the original enantiomeric excess only for low noise
amplitudes �see the numerical results in Sec. IV�.

On the other hand, if the model has k4−k5�0 which from
Eq. �6� implies that u21�u12, then the system evolves to one
of the two stable fixed points U1 or U2. At either U1 or U2,
the system attains unidirectional interspecies couplings, see
Eq. �6�, which lead to the absolute amplification of one enan-
tiomer at the expense of the other: that is, complete chiral
symmetry breaking and a pure homochiral stable final state is
the inevitable outcome �see the numerical results in Sec. IV�.

For the sake of completeness, we now address the remain-
der of the flow diagram �the unshaded regions�. In this case,
there is then another separatrix whose equation is u12+u21
=0, which divides the complete basin of attraction of the two
unidirectional fixed points from the dashed line u12+u21=
−2u*; see Fig. 1. The parameter domain to the left of this
dashed line corresponds to a region of instability, and it is
conjectured in �13� that couplings satisfying the condition
u12+u21�0 will lead to first order transitions. We hasten to
point out, however, that this part of the diagram is only ac-
cessible if initial values of the u12 and or u21 are negative,
corresponding to a negative diffusion D0�0, provided, of
course, that none of the reaction rates ki are allowed to be-
come negative �20�. Thus the region of this diagram appli-
cable to real chemical systems is represented by the shaded
quadrant.

IV. CRITICAL DYNAMICS

The temporal evolution of the two enantiomers in the
critical regime represented in Fig. 1 is governed by a pair of
coupled Langevin equations which follow straightforwardly
from the effective action Sef f. These are obtained by carrying
out a Gaussian integration over the conjugate fields �* and
�* in the path integral of the exponentiated effective action:
�D�D�*D�D�* e−Sef f��,�*,�,�*�. This final step yields a
product of delta functional constraints under the integral
which, in turn, lead to a pair of exact coupled stochastic
partial differential equations �19�. The advantage of obtain-

ing the Langevin equations in this way is that the noise prop-
erties are fully determined and do not have to be guessed at
or put in by hand. Numerical solutions of these stochastic
equations can be carried out to reveal the nature and quali-
tative tendency of the spatial and temporal evolution of the
competing enantiomers in the neighborhood of each RG
fixed point, as well as within their respective basins of at-
traction.

The Langevin equations that follow from Sef f are given by

�

�t
� = D0�

2� + �k1A − k6�� − u0�2 − �k2 + k5��−1�� + �1,

�7�

�

�t
� = D0�

2� + �k1A − k6�� − u0�2 − �k2 + k4��−1�� + �2,

�8�

where the noise satisfies ��1�= ��2�=0 and

��1�x,t��1�x�,t��� = 2u0��x,t�
d�x − x��
�t − t�� , �9�

��2�x,t��2�x�,t��� = 2u0��x,t�
d�x − x��
�t − t�� . �10�

These equations hold in the critical region shown in Fig. 1.

A. Langevin equations in the vicinity of the saddle point

In particular, the behavior of the model in the vicinity of
the saddle point S where the interspecies couplings u12 and
u21 flow to a symmetric fixed value, is given by the solutions
of the system Eqs. �7�, �8� where we now set k4=k5. These
are subject to the noise Eqs. �9�, �10�, and we use the result
that u0 /D0 flows to u*, together with the corresponding fixed
point values for u12 and u21, as given in Eq. �6�. At this

juncture, it is also convenient to rescale the fields �̃

=D0u* / �k1A−k6��, �̃=D0u* / �k1A−k6��, and employ di-
mensionless time �= �k1A−k6�t and coordinates x̂j = ��k1A
−k6� /D0�1/2xj. These simple steps yield the stochastic equa-
tions in the vicinity of the saddle point S:

���̃ = �̂2�̃ + �̃ − �̃2 − �̃�̃ + �̃1�x̂,�� , �11�

���̃ = �̂2�̃ + �̃ − �̃2 − �̃�̃ + �̃2�x̂,�� , �12�

where the rescaled noise is given by

��̃1�x̂,���̃1�x̂�,���� = 2 D0

k1A − k6
�2−d/2

u*2�̃�x̂,��


d�x̂ − x̂��
�� − ��� , �13�

��̃2�x̂,���̃2�x̂�,���� = 2 D0

k1A − k6
�2−d/2

u*2�̃�x̂,��


d�x̂ − x̂��
�� − ��� . �14�

In two dimensions, the noise strength is characterized by the
parameter �2=2D0u*2 / �k1A−k6�, with u*=1/�3�0.58, and
this can be large or small depending on whether the diffusion
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rate D0 is large or small �keeping the difference k1A−k6
�0 fixed�, respectively. In Fig. 2, some representative effects
of the diffusion on the critical dynamics in the neighborhood
of the saddle point S in d=2 are displayed for the spatially
averaged enantiomers for both large ��=1� and small ��
=0.3� internal noises and for nonracemic initial conditions.
Recall that here we have set k4=k5. We solve numerically the
full stochastic two-dimensional version of Eqs. �11�, �12�
subject to the noise given by Eqs. �13�, �14�, using reflecting
boundary conditions and a finite difference scheme with
��=0.005, �x̂=�ŷ=0.23, and a grid of size LL=154
154.

For small noise levels ��=0.3�, and for nonracemic initial
compositions, the initial proportion of the two chiral species
is roughly maintained, modulo the fluctuations; see the inner
pair of curves in Fig. 2. The evolution of �u��=0.3 is shown in
the red �dark gray� line and �v��=0.3 in the green �light gray�
line. However, for stronger noise ��=1�, the initial imbal-
ance shows an almost monotonic tendency to increase, sug-
gesting that sufficiently strong noise is capable of driving the
system to a homochiral final state, in spite of the manifest
mathematical chiral symmetry of the underlying evolution

equations and noise terms under the substitutions �̃→ �̃ and

�̃→ �̃. A mean field analysis of the solutions of Eqs. �11�
and �12�, which ignores both diffusion and noise, indicates
that the enantiomeric excess of the concentrations of the two
enantiomers is time independent �21�. Here, this is seen to be
approximately true also for the spatially averaged diffusing
enantiomers subject to small noise. But greater internal noise
induces a striking departure from this that is not captured by
the mean field approximation, as seen in Fig. 2. This is de-
picted in the outer pair of curves. The evolution of �u��=1 is
shown in the blue �dark gray� line and �v��=1 in the magenta
�light gray� line.

As we are interested here in displaying only the initial and
intermediate time dependent tendencies of the two enanti-
omer densities in the vicinities of the various RG fixed

points, we have employed standard integration of the Lange-
vin equations, sufficient for revealing the qualitative nature
of the solutions for short and intermediate computational
time steps, as can be seen in Figs. 2 and 3 �below�. Near an
absorbing state transition, one of the densities tends to zero,
and the numerical integration breaks down. This can be seen
clearly in the simulation of the evolution to the absorbing
state, which is shown only for the shorter time scales in these
figures. This standard algorithm is of course not adequate for
extracting the much more precise and delicate information
such as asymptotic decays or power law exponents. For the
latter, we would have had to appeal to the more sophisticated
numerical schemes such as those proposed by Dickman �22�,
Moro �23� or by Dornic et al. �24�.

B. Langevin equations in the vicinity of
the unidirectional fixed points

The behavior of the system near one of the two stable
attracting fixed points, for instance U1, is determined by the
pair of equations

���̃ = �̂2�̃ + �̃ − �̃2 − 2�̃�̃ + �̃1�x̂,�� , �15�

���̃ = �̂2�̃ + �̃ − �̃2 + �̃2�x̂,�� , �16�

with the noise properties as given above in Eqs. �13�, �14�.
Here, we use the fixed point value �u12,u21�= �0,2u*�. Recall
in order to arrive at this fixed point, we set k4�k5. This
corresponds to “starting” the system off in either the basin of
attraction of U1 or that of U2 �see the shaded quadrant in
Fig. 1�. Note the manifest asymmetry in the equation pair
due to the presence of the unidirectional coupling term in Eq.
�15�, absent from Eq. �16�. This fixed point is associated with
homochirality, as confirmed by numerical simulation; see
Fig. 3. Starting from racemic initial conditions, the plot of
the spatially averaged enantiomeric densities, in Fig. 3, indi-
cates an extremely rapid onset of absolute chiral amplifica-
tion.

0
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0.4
0.5
0.6
0.7
0.8
0.9

1

0 10000 20000 30000
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FIG. 2. �Color online� k4=k5: Time evolution of the spatially

averaged enantiomer densities �u�= ��̃� and of �v�= ��̃� in two di-
mensions d=2 for two representative simulations of the stochastic
dynamics near the saddle point S, Eqs. �11�, �12� with noise Eqs.
�13�, �14�. Evolution of nonracemic homogeneous initial conditions

(�̃�x̂ , ŷ ,�=0� , �̃�x̂ , ŷ ,�=0�)= �0.6,0.4�. For weak noise �=0.3 see
the inner pair of red �dark gray� and green �light gray� curves. For
stronger �=1 noise, see the outer pair of blue �dark gray� and
magenta �light gray� curves.
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FIG. 3. �Color online� k4�k5: Time evolution of the spatially

averaged enantiomer densities �u�= ��̃� and of �v�= ��̃� in two di-
mensions d=2 for a representative simulation of the stochastic dy-
namics near the asymmetric unidirectional fixed point U1, Eqs.
�15�, �16�. Evolution of homogeneous racemic initial conditions

(��̃�x̂ , ŷ ,�=0� , �̃�x̂ , ŷ ,�=0�)= �0.5,0.5� for noise level �=1. �u��=1

is shown in the upper solid red �dark gray� curve and �v��=1 is
shown in the lower dashed green �light gray� curve.
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The evolution of �u��=1 is shown in the upper solid red
�dark gray� curve and that of �v��=1 is shown in the lower
dashed green �light gray� curve. The equations governing the
critical dynamics at the other stable fixed point U2 are had

by simply interchanging the fields �̃↔ �̃ in Eqs. �15�, �16�
and replacing �̃1↔ �̃2. The behavior is quantitatively identi-
cal, but with the roles of the two enantiomers obviously re-
versed.

Near criticality, there is no numerical evidence for
the formation of the spatially segregated chiral domains
bounded by racemic fronts, in marked contrast to the results
reported in �18�. The distinguishing factor of course is that
the present simulations are carried out at the unidirectional
critical points U1 or U2, whereas in �18�, the system was
explored far away from criticality, where such chirally pure
domains are expected to form �6,25�. At the RG unidirec-
tional fixed points, the dynamical equations themselves are
manifestly chirally asymmetric, and the system rapidly
evolves to a final homochiral state, without passing through
the intermediate stages of enantiomeric competition.

C. Stochastic dynamics away from the critical points

The distinction between the critical and noncritical behav-
ior can be sharpened by contrasting the mathematical struc-
ture of the critical equations and noise to those that hold
away from the fixed points. The latter are of course given by
the system Eqs. �7�, �8� with the fluctuations obeying Eqs.

�9�, �10� �26�. By means of the field rescaling �̃= ��k2

+k5� /u0��, and with a similar relation between �̃ and �,
these Langevin equations can be written as �note: in what
follows we take k4=k5�

���̃ = �̂2�̃ + �̃ − g�̃2 − �̃�̃ + �1�x̂,�� , �17�

���̃ = �̂2�̃ + �̃ − g�̃2 − �̃�̃ + �2�x̂,�� , �18�

where g=k3 / �k2+k5� and the rescaled noise obeys

��1�x̂,���1�x̂�,���� = 2
�k2 + k5�

D0
d/2 �k1A − k6�d/2−1�̃�x̂,��


d�x̂ − x̂��
�� − ��� , �19�

��2�x̂,���2�x̂�,���� = 2
�k2 + k5�

D0
d/2 �k1A − k6�d/2−1�̃�x̂,��


d�x̂ − x̂��
�� − ��� . �20�

If the noise and the diffusion terms are ignored, then a
mean field analysis of the homogeneous asymptotic solutions
of the corresponding equations Eqs. �17�, �18�, reveals that
the parameter g plays a special role �21�. Indeed, g�1 leads
to chiral amplification of an initial enantiomeric excess,
whereas g�1 leads to a racemic final state. The point g=1
was identified as a critical value, in the sense that a sudden
qualitative change in the asymptotic behavior of the mean
field solutions is observed: the ratio of the two enantiomeric
concentrations in this borderline case remains constant, and

depends on the initial composition. If the initial condition is
racemic, the system will always remain racemic, if, however,
there is a slight initial excess, this excess is forever main-
tained �21�.

From these remarks we see that the spatially dependent
and stochastic effective equations associated with each renor-
malization group fixed point S ,U1, Eqs. �11�, �12� and Eqs.
�15�, �16�, respectively, have g=1. Likewise for the point
U2. It is as if we had set g to its “critical” value. But it is
important to emphasize that at these RG fixed points, g is no
longer a freely adjustable parameter, but under renormaliza-
tion is automatically driven to this special value. The RG
thus provides a rational physical explanation for why g=1 at
criticality.

V. DISCUSSION

As supported by surveys and reviews of the present status
of chiral autocatalysis, mirror symmetry breaking, stochas-
ticity, and their implications for the origin of homochirality,
the Frank model and its extensions continue to serve as the
paradigm for theoretical studies of this phenomenon
�3–5,27�. In this paper we have studied the critical properties
of the Frank model and a simple extension of it, by exploit-
ing the mapping of this kinetic scheme to a well studied
phenomenon from condensed matter and nonequilibrium sta-
tistical physics, namely, �multispecies� directed percolation
processes �13�. By virtue of this exact mapping, which is
established at the level of statistical field theory, the complete
renormalization group �RG� analysis of the critical properties
of directed percolation can be applied to study the critical
features of the Frank model. The most significant result in
this paper is the description of a new effect in the field of
molecular chirality, namely mirror symmetry breaking in-
duced by internal noise in extremely diluted systems with
absolute enantioselective catalysis. Such a mechanism is of
course vitally important for scenarios of prebiotic chemistry,
where it is commonly agreed upon that sufficiently high con-
centrations of organic compounds could not have been
reached during the chemical evolution of the early earth �28�.
These final states are consequence of internal composition
fluctuations and reactions limited by spatial diffusion. To
reach these dilute multicritical states, the difference between
the amplification and decay rates must be close to zero �13�.
This contrasts to Saito and Hyuga’s suggestion that, for
closed systems, both nonlinear autocatalysis and recycling
with diffusion seem to be required for chiral symmetry
breaking in dilute solutions �29�. Additional insight into the
dynamical consequence of each transition is provided by de-
riving and numerically solving the exact effective Langevin
equations that hold in the neighborhood of each fixed point.

It has been known for some time that the chirally sym-
metric state of the Frank model is unstable and that �exter-
nal� fluctuations can induce a transition to homochiral final
states. There are evidently a number of distinct routes lead-
ing to homochirality, and the concept of criticality and the
identification of the associated critical parameters should be
clearly distinguished. From general bifurcation theory, we
thus learn that the transition from a symmetric to a chiral
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final state can be induced by varying solely the concentra-
tions of the substrate molecules �30�. The mean field analysis
of Ref. �21�, on the other hand, identifies the ratio of rate
constants g=k3 /k2 as the pertinent critical parameter. In cer-
tain crystallization experiments, it is the stirring rate of the
solution that has been observed to play the role of a critical
parameter �31�. The present work makes use of the fact that
chiral or mirror symmetry breaking is an example of an ac-
tive to absorbing state phase transition, and that such transi-
tions are generically characterized by directed percolation
processes �DP� �16�. RG techniques can be applied to ana-
lyze this symmetry breaking phenomenon in extremely dilute
chemical systems in a precise manner.
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APPENDIX A: CRITICAL REGIME IMPLIES
EXTREME DILUTION

Simple bifurcation analysis of the purely kinetic scheme
Eqs. �1�–�3�

dL

dt
= �k1A − k6�L − k3L2 − �k2 + k�LD , �A1�

dD

dt
= �k1A − k6�D − k3D2 − �k2 + k�LD , �A2�

reveals the chemical nature of the critical regime of the fully
stochastic field theory treated in this paper �32�. Here, A, L,
and D denote concentrations and we have set k4=k5=k. In-
troduce the enantiomeric excess �= L−D

L+D and the total concen-
tration of chiral matter �=L+D. Then the kinetic equations
Eqs. �A1�, �A2� can be written as follows:

d�

dt
=

k2 + k − k3

2
���1 − �2� , �A3�

d�

dt
= �k1A − k6�� − �k3 +

k2 + k − k3

2
�1 − �2���2. �A4�

For behavior with large amount of chiral matter, ��0,
we must have �k1A−k6��0. This requires that the system be
far from criticality. The bifurcation equation �1� is then
��1−�2�=0 and there are three stationary solutions:

�� = 0,� = 2
k1A − k6

k2 + k + k3
� , �A5�

unstable if k2−k�0 and stable if k2−k�0, and

�� = ± 1,� =
k1A − k6

k3
� , �A6�

stable if k2−k�0 and unstable if k2−k�0. From this we can
deduce the following salient features: First, by introducing
the dimensionless time �= �k1A−k6�t, we see that far from
criticality, the variable � changes much more rapidly than the
enantiomeric excess �. The system rapidly reaches a quasis-
tationary state for � �d� /d��0� and then the slow variable �
evolves and the full system reaches its true steady state. Sec-
ond, the criticality condition �k1A−k6��0 corresponds to the
kinetic behavior under conditions of extreme dilution, ��0,
with the concentration of chiral material close to zero. In this
case, the system has no well defined steady state with respect
to the concentration �, since �= �L−D� /� yields an indeter-
minate expression near criticality. Furthermore, the equation
for � becomes as “slow” as the equation for �, and the use of
classical kinetic approach based on the law of mass action
becomes questionable. Thus the stochastic approach em-
ployed in this paper is not only justified, but is needed to
correctly describe the critical regime of the Frank model.

APPENDIX B: REVERSIBLE REACTIONS

The backreaction of the dimerization step is eliminated if
the product P is continuously being removed from the reac-
tor. Otherwise, the reverse reaction must be taken into ac-
count. Furthermore, as pointed out by Avetisov and Goldan-
skii �1�, reversibility in the mutual inhibition reactions will
account for the limited enantioselectivity of chiral catalysts,
so that the catalytic effect of each enantiomer leads to the
formation of both L and D products. To include these effects,
the following reactions would have to be added to the above
scheme Eqs. �1�–�3�:

P→
k−2

L + D, L + A→
k−4

L + D, D + A→
k−5

L + D . �B1�

The left-hand-most reaction corresponds to the backreaction
of the dimerization, while the latter two allow for reversibil-
ity in the mutual inhibition reactions. Going through the
same algebraic procedure that led us to the effective action in
Sec. II, we find that the above reactions yield the following
terms to be added to the effective action in Eq. �5�:

�Sef f = −� ddx� dt	k−2��* + k−2��* + k−2�2�*�*

+ k−4�*� + k−5�*� + k−4��*��* + k−5��*��*
 .

�B2�

From dimensional analysis we find that �k−2��=�2+d/2,
�k−2�2�= �k−4�= �k−5�=�2 are relevant perturbations in the
sense of the RG for all dimensions, whereas �k−4��= �k−5��
=�2−d/2. The corresponding cubic terms are therefore mar-
ginal in dc=4 dimensions and are relevant for d�4.

From the point of view of the field-theoretic content of
�Sef f, we see that the dimerization backreaction induces new
relevant terms not present in the original effective action
proportional to ��* , ��*, as well as a term of dimension
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�2. However, this additional term proportional to �*�* dy-
namically couples the two enantiomers via a cross-correlated
noise, a feature not present in the absence of dimer breakup.
Regarding the limited enantioselectivity reactions, these in-
duce “masslike” terms ��*� , ��*�, that also serve to link
the two enantiomers. In fact, these terms lead to off diagonal

contributions to the response functions or propagators. The
new cubic terms ��*��* , ��*��* are also sources of “off-
diagonal” or cross-correlated reaction noise; in graphical per-
turbation theory, these lead to new cubic vertices which
would have to be included in a field-theoretic RG analysis,
such as in �17�.
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